General Information In many industrial sectors and fields of research, temperature measurement is one of the most important parameters which determines product quality, security, and reliability. Temperature sensors are available in several types all of which have a unique performance characteristic. The performance capability of the various sensors are a result of the manufacturing process and component materials associated with their technologies and intended application. It is IST Charter to produce sensors that exceed the industry standard of temperature measurement with additional capability to directly replace older traditional methods and provide the maximum performance. To this end IST has concentrated its development and manufacturing on the process and materials of high-end thin-film temperature sensors. Additionally these processes, partially derived from the semiconductor industry allows IST to manufacture sensors in very small dimensions. Because of their low thermic mass thin-film temperature sensors exhibit a very short response time. IST core technology and processes results in thin-film sensors that combine the good features of traditional wire wound platinum sensors such as accuracy, long-term stability, repeatability, interchangeability and wide temperature range, with the advantages of mass-production, which contributes to their optimal price/performance ratio. #### **Sensor Construction** The temperature sensor consists of a photo-lithographically structured, high-purity platinum coating arranged in the shape of a meander. The platinum thin-film structures are laser trimmed to form resistive paths with very precisely defined basic value of the resistivity. The sensors are covered with a glass passivation layer; to protect the sensor against mechanical and chemical damage. The bonded leadwires which are additionally covered with a drop of glass make electrical contacts to the resistive structure. #### **Typical Features** - brief response time - excellent long-term stability - low self-heating rate - excellent price/performance ratio - small dimensions - resistant against vibration and temperature shocks - simple interchangeability #### **Response Time** The response time $T_{0.63}$ is the time in seconds the sensors need to respond to 63% of the change in temperature. The response time depends on the sensor dimensions, the termal contact resistance and the encloser medium. #### Long-Term Stability The change of ohmage after 1,000 hrs at maximum operating temperature until the 7W types amounts to less than 0.03%. #### **Self Heating** To measure the resistance an electric current has to flow through the element, which will generate heat energy resulting in errors of measurement. To minimize the error, the testing current should be kept low (approximately 1 mA for pt-100). Temperature error $\Delta T = RI^2$ / E; with E = self-heating coefficient in mW/K R = resistance in k Ω , I = measuring current in mA #### **Measurement current** The amount of thermal transfer from the sensor in application determines how much measuring current can be applied. There is no bottom limit of the measurement current with platinum thin-film. The measurement current depend highly on the application in use. For sensors from 750°C - 1000°C (7W, 8W, 10W) the measurement current must limited at max. 1 mA. ### We recommend at: | 100 Ω: | typ. 1 mA | max. 5 mA | |----------|-------------|-------------| | 500 Ω: | typ. 0.5 mA | max. 3 mA | | 1000 Ω: | typ. 0.3 mA | max. 2 mA | | 2000 Ω: | typ. 0.2 mA | max. 1 mA | | 10000 Ω: | typ. 0.1 mA | max. 0.3 mA | #### **Nominal values** The nominal or rated value of the sensor is the target value of the sensor resistance at 0° C. The temperature coefficient α is defined as $\alpha = \frac{R_{100} - R_0}{100 \cdot R_0}$ [K⁻¹] and has the numerical value of 0.00385 K⁻¹ according to DIN IEC 751. In practice, a value multiplied by 10^6 is often entered: TCR = $10^6 * \frac{R_{100} - R_0}{100 \cdot R_0}$ [ppm/K]. In this case, the numerical value is 3850 ppm/K. ### **Temperatur Characteristic Curve** The characteristic temperature curve determines the dependence of the electrical resistivity on the temperature. The following definition of the temperature curve according to the DIN EN 60751 standard applies: -200 bis 0°C $$R(t) = R_0 (1 + A * t + B * t^2 + C * [t-100] * t^3)$$ 0 bis 850°C $$R(t) = R_0 (1 + A * t + B * t^2)$$ Platinum (3850 ppm/K): A = 3.9083 * $$10^{-3}$$ [°C⁻¹]; B = -5.775 * 10^{-7} [°C⁻²]; C = -4.183 * 10^{-12} [°C⁻⁴] Platinum (3750 ppm/K): A = $$3.8102 * 10^{-3} [°C^{-1}]; B = -6.01888 * 10^{-7} [°C^{-2}]; C = -6 * 10^{-12} [°C^{-4}]$$ Platinum (3770 ppm/K): $$A = 3.92 \times 10^{-3} [^{\circ}C^{-1}]; B = -6.03 \times 10^{-7} [^{\circ}C^{-2}];$$ R₀ = Resistance value in ohm at 0°C; t = temperature in accordance with ITS 90 Tolerance field #### **Tolerance Classes** temperature sensors are divided into classes according to their limit deviations: | Class | +/- limit deviations in °C (K) | IST AG designation | area of validity of temperature class | |----------------------|--------------------------------|--------------------|---------------------------------------| | DIN 60751, class B | 0.30 + 0.005 x t | В | -200°C bis 850°C | | DIN 60751, class A | 0.15 + 0.002 x t | Α | -90°C bis 300°C | | ⅓ DIN 60751, class E | 3 0.10 + 0.0017 x t | Υ | -50°C bis 150°C | | 2DIN 60751, class B | 0.60 + 0.01 x t | С | -200°C bis 850°C | | 1/5 DIN 60751, class | B 0.06 + 0.001 x t | 1/5 | on request | | 1/10 DIN 60751, clas | s B 0.03 + 0.0005 x t | 1/10 | on request | | t | is the numerical value of the temperature in °C without taking into account either negative or positive signs. Special selection of sensors upon request (e.g. pairings, grouping, special tolerances) ### **Response Times and Self-Heating** | Dimension
Number | Sensor Size | R | Respo | nse T | ime i | n secon | ds | | Self-H | eating | | |---------------------|-------------------------|------------------|-------------------|------------------|------------------|-------------------|------------------|------|---------------|--------|--------------| | | LxWxT/Hinmm | Wat | er 0.4 | m/s | | Air 1m/ | S | | ater
0 m/s | | Air
0 m/s | | | | T _{0.5} | T _{0.63} | T _{0.9} | T _{0.5} | T _{0.63} | T _{0.9} | mW/K | ∆T[mK]* | mW/K | ∆T[mK]* | | MiniSens 161 | 1.6 x 1.2 x 0.25 / 0.9 | 0.05 | 0.08 | 0.18 | 1 | 1.2 | 2.5 | 12 | 8.3 | 1.8 | 56 | | SlimSens 308 | 3.0 x 0.8 x 0.25 / 0.6 | 0.08 | 0.10 | 0.25 | 1.2 | 1.5 | 3.5 | 15 | 6.7 | 2.2 | 46 | | 232 | 2.3 x 2.0 x 0.25 / 0.9 | 0.09 | 0.12 | 0.33 | 2.7 | 3.6 | 7.5 | 40 | 2.5 | 4 | 25 | | 202 | 2.0 x 2.0 x 0.63 / 1.3 | 0.12 | 0.18 | 0.42 | 4 | 5.4 | 11 | 36 | 2.8 | 3.6 | 28 | | 216 | 2.0 x 1.6 x 0.63 / 1.3 | 0.11 | 0.16 | 0.38 | 3.6 | 4.9 | 10.2 | 32 | 3.1 | 3.2 | 31 | | 232 | 2.3 x 2.0 x 0.63 / 1.3 | 0.15 | 0.2 | 0.55 | 4.5 | 6 | 12 | 40 | 2.5 | 4 | 25 | | 325 | 3.0 x 2.5 x 0.63 / 1.3 | 0.25 | 0.3 | 0.7 | 5.5 | 7.5 | 16 | 90 | 1.1 | 8 | 13 | | 516 | 5.0 x 1.6 x 0.63 / 1.3 | 0.25 | 0.3 | 0.7 | 5.5 | 7.5 | 16 | 80 | 1.3 | 7 | 14 | | 520 | 5.0 x 2.0 x 0.63 / 1.3 | 0.25 | 0.3 | 0.75 | 6 | 8.5 | 18 | 80 | 1.3 | 7 | 14 | | 525 | 5.0 x 2.5 x 0.63 / 1.3 | 0.33 | 0.4 | 0.85 | 6.5 | 9 | 19 | 90 | 1.1 | 8 | 13 | | 538 | 5.0 x 3.8 x 0.63 / 1.3 | 0.35 | 0.4 | 0.9 | 7.5 | 10 | 20 | 140 | 0.7 | 10 | 10 | | 505 | 5.0 x 5.0 x 0.63 / 1.3 | 0.4 | 0.5 | 1.1 | 8 | 11 | 21 | 150 | 0.7 | 11 | 9 | | 102 | 10.0 x 2.0 x 0.63 / 1.3 | 0.33 | 0.4 | 0.85 | 7.5 | 10.5 | 20 | 140 | 0.7 | 10 | 10 | | 281 | 1 x 13 x Ø 2.8 | 2.5 | 4.5 | 8 | 10 | 15 | 28 | 60 | 1.7 | 5.5 | 18 | | 281 | 2 x 13 x Ø 2.8 | 2 | 2.5 | 5.5 | 10 | 12 | 22 | 45 | 2.2 | 4 | 25 | | 451 | 1 x 13 x Ø 4.5 | 8 | 10 | 22 | 12 | 22 | 40 | 85 | 1.2 | 8 | 13 | | 451 | 2 x 13 x Ø 4.5 | 5 | 6 | 14 | 16 | 18 | 37 | 60 | 1.7 | 6.5 | 15 | | SMD 1206 | 3.2 x 1.6 x 0.4 | 0.15 | 0.25 | 0.45 | 3.5 | 4.2 | 10 | 55 | 1.8 | 7 | 14 | | SMD 0805 | 2.0 x 1.2 x 0.4 | 0.10 | 0.12 | 0.33 | 2.5 | 3 | 8 | 38 | 2.6 | 4 | 25 | | FC 0603 | 1.5 x 0.75 x 0.4 | 0.08 | 0.10 | 0.25 | 1.8 | 2.2 | 5.5 | 25 | 4 | 2.5 | 40 | ^{*}self heating $\Delta T[mK]$ measured for Pt100 at 1mA measurement current at 0°C L: Chip length (sensor length without connections) W: Sensor width T: Chip thickness (sensor thickness without connections) H: Sensor height (incl. connections and strain relief) Notification: The values in the table are of informative nature only. Due to different measurement conditions you might assess deviant self heating and response time values of your application. ### **Tolerances of dimensions** Sensor width (W) \pm 0.2 mm Sensor length (L) \pm 0.2 mm Sensor height (H) \pm 0.3 mm Sensor thickness (T) \pm 0.1 mm Wire length ± 1.0 mm Tube length ± 0.2 mm Tube diameter ± 0.1 mm ### 1P - Product Series Temperature Range: -60°C... +150°C ## Temperature sensors in SMD construction Soldering depot, RoHs conform (reflow soderable) *only Flip Chip assembly #### **Technical Data** Temperature range: -50°C to +150°C (1P, 2P); -50°C to +250°C (3P, 4P) Classes: Pt: DIN class A; DIN class B; 2x DIN class B Soldering connection: Contacts: 1P = Contacts tin coated (62Sn/36Pb/2Ag), LMP lead contained 2P = Contacts tin coated (96.5Sn/3Ag/0.5Cu), LMP lead free, RoHS conform 3P = Contacts tin coated (5Sn/93.5Pb/1.5Ag), HMP, RoHS conform 4P = Contacts gold plated, solderable film - there is no ensurance for DIN class A, due to the changed resistance value after soldering. - bondable contacts without bumps available on request. Solderability: 235°C \leq 8s (DIN IEC 68 2-20, Ta Meth 1) Resistance to soldering heat: 260°C 10x (DIN IEC 68 2-20, Ta Meth. 1A) Long-term stability: Pt: max. Drift = 0.04% after 1000h at 130°C | Dimensions in mm | Nominal Resistance at 0°C in Ohm | Chip-Dimensions in mm | Description | |------------------|----------------------------------|-----------------------|------------------| | | | | | | 1,2 | 100 | LxW 2.0 x 1.2 | P0K1.0805.xP.x | | | 500 | LxW 2.0 x 1.2 | P0K5.0805.xP.x | | | 1000 | LxW 2.0 x 1.2 | P1K0.0805.xP.x | | 1,6 | 100 | LxW 3.2 x 1.6 | P0K1.1206.xP.x | | | 500 | LxW 3.2 x 1.6 | P0K5.1206.xP.x | | | 1000 | LxW 3.2 x 1.6 | P1K0.1206.xP.x | | 0,75 | 100 | LxW 1.5 x 0.75 | P0K1.0603.xFC.x* | | | 500 | LxW 1.5 x 0.75 | P0K5.0603.xFC.x* | | | 1000 | LxW 1.5 x 0.75 | P1K0.0603.xFC.x* | ## **1S - Product Series** Temperature Range: -60°C... +150°C ## Temperature sensors with SIL-Contacts (solderable, crimpable), 10 mm long | Dimensions in mm | Nominal Resistance at 0°C in Ohm | Chip-Dimensions in mm | Description | |------------------|----------------------------------|-----------------------|---------------| | 1,27 0,5 | 100 | LxW 3.0 x 2.5 | P0K1.325.1S.x | | 10,65 | 500 | LxW 3.0 x 2.5 | P0K5.325.1S.x | | 1,27 0,5 | 1000 | LxW 3.0 x 2.5 | P1K0.325.1S.x | | 2,5,0,65 | 100 | LxW 5.0 x 2.5 | P0K1.525.1S.x | | | 500 | LxW 5.0 x 2.5 | P0K5.525.1S.x | | | 1000 | LxW 5.0 x 2.5 | P1K0.525.1S.x | | 3,8 2,54 0,5 | 100 | LxW 5.0 x 3.8 | P0K1.538.1S.x | | | 500 | LxW 5.0 x 3.8 | P0K5.538.1S.x | | | 1000 | LxW 5.0 x 3.8 | P1K0.538.1S.x | | 5 0,65 | 100 | LxW 5.0 x 5.0 | P0K1.505.1S.x | | | 500 | LxW 5.0 x 5.0 | P0K5.505.1S.x | | | 1000 | LxW 5.0 x 5.0 | P1K0.505.1S.x | ## 2S - Product Series Temperature Range: -60°C...+200°C ## Temperature sensors with SIL-Contacts (solderable, crimpable), 10 mm long | Dimensions in mm | Nominal Resistance at 0°C in Ohm | Chip-Dimensions in mm | Description | |------------------|----------------------------------|-----------------------|---------------| | 1,27.0,5 | 100 | LxW 3.0 x 2.5 | P0K1.325.2S.x | | 1,27.0,5 | 1000 | LxW 3.0 x 2.5 | P1K0.325.2S.x | | 2,5 0,65 | 100 | LxW 5.0 x 2.5 | P0K1.525.2S.x | | | 1000 | LxW 5.0 x 2.5 | P1K0.525.2S.x | | 3,8 2,54 0,5 | 100 | LxW 5.0 x 3.8 | P0K1.538.2S.x | | | 1000 | LxW 5.0 x 3.8 | P1K0.538.2S.x | | 5 0,65 | 100 | LxW 5.0 x 5.0 | P0K1.505.2S.x | | | 1000 | LxW 5.0 x 5.0 | P1K0.505.2S.x | **3FW - Product Series** Temperature Range: -200...+300°C Temperature sensors with Flat Wire (FW) connections Ni/Au wire $0.2 \times 0.4 \times 7/10$ mm (H x W x L), (solderable, weldable, crimpable) | Dimensions in mm | Nominal Resistance at 0°C in Ohm | Chip-Dimensions in mm | Description | |------------------|----------------------------------|-----------------------|------------------| | 2.5 | 100 | LxW 2.5 x 1.6 | P0K1.216.3FW.x.x | | | 1000 | LxW 2.5 x 1.6 | P1K0.216.3FW.x.x | | 2 1,3 | 100 | LxW 2.0 x 2.0 | P0K1.202.3FW.x.x | | | 500 | LxW 2.0 x 2.0 | P0K5.202.3FW.x.x | | | 1000 | LxW 2.0 x 2.0 | P1K0.202.3FW.x.x | | 2,3 1,3 | 100 | LxW 2.3 x 2.0 | P0K1.232.3FW.x.x | | | 500 | LxW 2.3 x 2.0 | P0K5.232.3FW.x.x | | | 1000 | LxW 2.3 x 2.0 | P1K0.232.3FW.x.x | | 20,065 | 10'000 | LxW 5.0 x 2.0 | P10K.520.3FW.010 | **4W - Product Series** Temperature Range: -200°C...+400°C Temperature sensors with wire connections Silver wire connection 0.25 mm x 10 mm (\emptyset x L), (solderable, weldable) | Dimensions in mm | Nominal Resistance
at 0°C in Ohm | Chip-Dimensions in mm | Description | |----------------------------|-------------------------------------|-----------------------|-------------------| | 0.5 1.6 0.25 0.85 1.3 0.85 | 100 | LxW 1.6 x 1.2 | P0K1.161.4W.x.010 | | | 500 | LxW 1.6 x 1.2 | P0K5.161.4W.x.010 | | | 1000 | LxW 1.6 x 1.2 | P1K0.161.4W.x.010 | | 2 1,3 | 100 | LxW 2.0 x 2.0 | P0K1.202.4W.x.010 | | | 500 | LxW 2.0 x 2.0 | P0K5.202.4W.x.010 | | | 1000 | LxW 2.0 x 2.0 | P1K0.202.4W.x.010 | | | 2000 | LxW 2.0 x 2.0 | P2K0.202.4W.x.010 | | 2.5 | 100 | LxW 2.5 x 1.6 | P0K1.216.4W.x.010 | | 2,3 11,3 | 100 | LxW 2.3 x 2.0 | P0K1.232.4W.x.010 | | | 500 | LxW 2.3 x 2.0 | P0K5.232.4W.x.010 | | | 1000 | LxW 2.3 x 2.0 | P1K0.232.4W.x.010 | | | 2000 | LxW 2.3 x 2.0 | P2K0.232.4W.x.010 | | 1, 5 0,65 | 100 | LxW 5.0 x 1.6 | P0K1.516.4W.x.010 | | | 500 | LxW 5.0 x 1.6 | P0K5.516.4W.x.010 | | | 1000 | LxW 5.0 x 1.6 | P1K0.516.4W.x.010 | | | 2000 | LxW 5.0 x 1.6 | P2K0.516.4W.x.010 | ## **6W - Product Series** Temperature Range: -200°C...+600°C ## Temperature sensors with wire connections Platinum clad (coated) nickel wire, 0.2 mm x 10 mm (\emptyset x L), (solderable, weldable, crimpable) | Dimensions in mm | Nominal Resistance at 0°C in Ohm | Chip-Dimensions in mm | Description | |--|---|--|--| | 05
18
10
10
10
10
10
10
10
10
10
10
10
10
10 | 100
500
1000 | LxW 1.6 x 1.2
LxW 1.6 x 1.2
LxW 1.6 x 1.2 | P0K1.161.6W.x.010
P0K5.161.6W.x.010
P1K0.161.6W.x.010 | | 3 0,6 | 100
500
1000
(Pure Platinum wire | LxW 3.0 x 0.8
LxW 3.0 x 0.8
LxW 3.0 x 0.8
0.15 mm diameter) | P0K1.308.7W.x.007
P0K5.308.7W.x.007
P1K0.308.7W.x.007 | | 2 1,3 | 100
500
1000
2000 | LxW 2.0 x 2.0
LxW 2.0 x 2.0
LxW 2.0 x 2.0
LxW 2.0 x 2.0 | P0K1.202.6W.x.010
P0K5.202.6W.x.010
P1K0.202.6W.x.010
P2K0.202.6W.x.010 | **7W - Product Series** Temperature Range: -200°C...+750°C Temperature sensors with wire connections With Platinum wire 0.2 mm x 7 mm (\emptyset x L), (solderable, weldable, crimpable) | Dimensions in mm | Nominal Resistance at 0°C in Ohm | Chip-Dimensions in mm | Description | |-------------------------|----------------------------------|-----------------------|-------------------| | 0.5 1.2 10.8 10.25 10.8 | 100 | LxW 1.6 x 1.2 | P0K1.161.7W.x.007 | | | 1000 | LxW 1.6 x 1.2 | P1K0.161.7W.x.007 | | 2,3 | 100 | LxW 2.3 x 2.0 | P0K1.232.7W.x.007 | | | 1000 | LxW 2.3 x 2.0 | P1K0.232.7W.x.007 | | 1,6 0,65 | 100 | LxW 5.0 x 1.6 | P0K1.516.7W.x.007 | | | 500 | LxW 5.0 x 1.6 | P0K5.516.7W.x.007 | | | 1000 | LxW 5.0 x 1.6 | P1K0.516.7W.x.007 | | 2,0 0,65 | 100 | LxW 5.0 x 2.0 | P0K1.520.7W.x.007 | | | 500 | LxW 5.0 x 2.0 | P0K5.520.7W.x.007 | | | 1000 | LxW 5.0 x 2.0 | P1K0.520.7W.x.007 | | 2 0,65 | 100 | LxW 10.0 x 2.0 | P0K1.102.7W.x.007 | | | 500 | LxW 10.0 x 2.0 | P0K5.102.7W.x.007 | | | 1000 | LxW 10.0 x 2.0 | P1K0.102.7W.x.007 | **8W - Product Series** Temperature Range: -200°C...+850°C Temperature sensors with wire connections Platinum wire 0.2 mm x 7 mm (Ø x L), (solderable, weldable, crimpable) | Dimensions
in mm | Nominal Resistance at 0°C in Ohm | Chip-Dimensions in mm | Description | |---------------------|----------------------------------|-----------------------|-------------------| | | 100 | LxW 5.0 x 1.6 | P0K1.516.8W.x.007 | | 1,3 | 500 | LxW 5.0 x 1.6 | P0K5.516.8W.x.007 | | | 1000 | LxW 5.0 x 1.6 | P1K0.516.8W.x.007 | | 1,6 1065 | | | | | 4 | 100 | LxW 4.0 x 2.0 | P0K1.420.8W.x.007 | | 1,3 | 500 | LxW 4.0 x 2.0 | P0K5.420.8W.x.007 | | | 1000 | LxW 4.0 x 2.0 | P1K0.420.8W.x.007 | | 20 0,65 | | | | ### 10W - Product Series Temperature Range: -70°C...+1000°C Temperature sensors with wire connections Platinum wire 0.2 mm x 7 mm (\emptyset x L), (solderable, weldable, crimpable) Temperature dependence 3770 ppm/K | Nominal Resistance at 0°C in Ohm | Chip-Dimensions in mm | Description | |----------------------------------|-----------------------|--------------------| | 200 | LxW 4.0 x 2.0 | P0K2.420.10W.K.007 | **4SW - Product Series** Temperature Range: -200°C...+400°C Temperature Range: -200°C...+600°C Temperature sensors with perpendicular leads Silver wire connections 0.25 mm x 10 mm (\emptyset x L), (solderable, weldable) | Dimensions in mm | Nominal Resistance at 0°C in Ohm | Chip-Dimensions in mm | Description | | |------------------|----------------------------------|-----------------------|--------------------|--| | 1,3 | 100 | LxW 1.6 x 1.2 | P0K1.161.4SW.x.010 | | | | 1000 | LxW 1.6 x 1.2 | P1K0.161.4SW.x.010 | | | 2,3 | 100 | LxW 2.3 x 2.0 | P0K1.232.4SW.x.010 | | | | 500 | LxW 2.3 x 2.0 | P0K5.232.4SW.x.010 | | | | 1000 | LxW 2.3 x 2.0 | P1K0.232.4SW.x.010 | | ## **T – Product Series** Temperature sensors on a thin substrate for short response time Platinum wire Nickel coated 0.2 mm x 10 mm (Ø x L), (solderable, weldable, crimpable) | Dimensions
in mm | Nominal Resistance at 0°C in Ohm | Chip-Dimensions in mm | Description | | |---------------------|----------------------------------|-----------------------|---------------------|--| 23 | 100 | LxW 2.3 x 2.0 | P0K1.232.6W.x.010.T | | | | 500 | LxW 2.3 x 2.0 | P0K5.232.6W.x.010.T | | | 2 0.9 | 1000 | LxW 2.3 x 2.0 | P1K0.232.6W.x.010.T | | ## **R - Product Series** Temperature Range: -50°C...+600°C Temperature sensors in ceramic tubes Platinum wire Nickel coated 0.2 mmx 7 mm (Ø x L), (solderable, weldable, crimpable) | | Dimensions in mm | Nominal Resistance at 0°C in Ohm | Chip-Dimensions in mm | Description | |--------|------------------|----------------------------------|--|---| | Mary . | 4,5 | 100
500
1000 | LxW 13.0 x 4.5
LxW 13.0 x 4.5
LxW 13.0 x 4.5 | P0K1.451.6W.x.R
P0K5.451.6W.x.R
P1K0.451.6W.x.R | | K. | 4,5 | 100
500
1000 | LxW 13.0 x 4.5
LxW 13.0 x 4.5
LxW 13.0 x 4.5 | 2xP0K1.451.6W.x.R
2xP0K5.451.6W.x.R
2xP1K0.451.6W.x.R | | | 13 | 100
500
1000 | LxW 13.0 x 2.8
LxW 13.0 x 2.8
LxW 13.0 x 2.8 | P0K1.281.6W.x.R
P0K5.281.6W.x.R
P1K0.281.6W.x.R | | | 13 | 100
500
1000 | LxW 13.0 x 2.8
LxW 13.0 x 2.8
LxW 13.0 x 2.8 | 2xP0K1.281.6W.x.R
2xP0K5.281.6W.x.R
2xP1K0.281.6W.x.R | | | 2.8 | | | | ### **CustomSens** #### Thin-film temperature sensors with universal connection possibilities It is the policy of IST to put forward as many sensor options as possible to best serve the customers needs. True to this policy is the CustomSens product. We are bringing a new range of sensors on to the market which will provide enormous versatility. The highlight of these thin-film temperature sensors is the flexibility of determining your own wire termination type or style as required. You can decide how much work we should take off your hands in the assembly of the sensors. You can choose between short or long connections, whether they are to be bare or insulated and whether the sensor is to be completed in 2-, 3- or even 4-wire technology. It is not only the great choice of these variables which offers you many advantages. Through the customized connection structure, the sensors are also characterized by superior product properties, giving you a double benefit. #### Universal possibilities Below you will find all the variables at a single glance. When you combine these with your requirement profile, you will obtain a customized sensor. | 1. Dimensions in mm: | 1,2 0,85 0,8 2 10,65 | 1,5 0 | 65 2n | 065 | 10 | 3,8 0,65 | | |------------------------|-------------------------|-------|-----------------------|-------------------------|-------|------------|--| | 2. Nominal resistance: | 100 Ohm | 5 | 500 Ohm | 1000 Ohm | | 10000 Ohm | | | 3. Temperature range: | 150°C | | 200°C | 400°C | | 600°C | | | Wire material: | Enameled Copper
Wire | Teflo | on insulated | Silver bare | | Pt/Ni bare | | | Wire diameter: | 0.2 mm | | G 26/30/32 | 0.25 mn | n | 0.2 mm | | | | | | anded Wire
WG 28/7 | | | | | | 4. Number of wires: | 2-Wires | | 3-Wires | | | 4-Wires | | | 5. Wire length: | 5 mm | | up to | 1000 mm | | | | | 6. Tolerance: | DIN EN 6 | | | DIN EN 60751
Class A | | | | | | Class | о D | | L | | 55 A | | | 7. Metallised | NiCr/N | | | Pt | | | | | backside: | -200°C + | 400°C | , | - | 200°C | + 600°C | | | | | | | | | | | Special materials and sizes on request # Platinum Temperature Sensors TEMPERATURE Order Information | P | Ī | 1 | K | 0. | 5 | 2 | 0. | 4 | W. | В. | 0 | 1 | 0. | M | | Example | | |--|--------|------|-----|--------------|--------|------|--------|--------|-------|---|----------|------|--------|----------------------------|-----------------------|--|--| | | | | | | | | | | | | | | | Sne |
ecials | | | | | | | | | | | | | | | | | | T | | e thickness 0.25 mm | | | | | | | | | | | | | | | | | Ď | | e thickness 0.38 mm | | | | | | | | | | | | | | | | | R | Sintered | ed backside | | | | | | | | | | | | | | | | | U | Inverted | welding | | | | | | | | | | | | | | Cal | nno. | otion | S | Special*
gth in mm | | | | | | | | | | | | | | Tol | | | clion | | gurmm | | | | | | | | | | | | | | A | | | OIN A | | | | | | | | | | | | | | | | В | | | IN E | | | | | | | | | | | | | | | | С | 2 C | lass | DIN | В | | | | | | | | | | | | | | | Υ | _ | | ss D | IN B | | | | | | | | | | | | | | | Р | Pai | | | | | | | | | | | | | | | | | | G | | oups | | : | :-+ | 1P = Contacts tin coated, | | | | | | | | | | | | Evto | K
ensio | | | ner s | pecii | IC" | LMP lead contained | | | | | | | | | | | | S | | | | n line | ١, | | 2P = Contacts tin coated,
LMP lead free, RoHS | | | | | | | | | | | | | | olde | | 111110 | ,, | | conform | | | | | | | | | | | | Р | | erall (| | D) | | \rightarrow | 3P = Contacts tin coated. | | | | | | | | | | | | FC | Tin- | | | | cts | | HMP_RoHS conform | | | | | | | | | | | | W | Wire | , | | | 4P = Contacts gold plated, | | | | | | | | | | | | | | | Per | | | ar lea | eads solderable film | | | | | | | | | | | | | | | | lat wire | | | | | | | | | | | | | | | | | | Insulated contacts | | | | | | | | | | | | | | | | | | E | Enameled wires | | | | | | | | | | | | | | | | | | K | Insulated stranded wires Customer specific* | | | | | | | | | | | | | | | | | Ten | | ature range | | | | | | | | | | | | | | | | | 1 | | °C to | | | | | | | | | | | | | | | | | 2 | | °C to | | | | | | | | | | | | | | | | | 3 | | °C to | | | | | | | | | | | | | | | | | 4 | | °C to | | | | | | | | | | | | | | | | | 6
7 | -200 | °C to | | | | | | | | | | | | | | | | | 8 | | °C to | | | | | | | | | | | | | | | | | 10 | | °C to | | | | | | | | | | | | | | Med | hani | ical d | | | | | | | nens | ions) in m | m | | | | | | | | alue | | nm at | | | | | | | | • | | | | | Cha | | | ic cu | | | | | | | | | | | | | | | | 147 | | | ppm/ | | | | | | | | | | | | | | | | W | | | | | tend | ed te | mper | ature | rang | e in | clas | s A) | | | | | | | U
G | Pt 3 | 011 | ppm/
ppm/ | N
K | | | | | | | | | | | | | | Mat | | | | ation | | | | | | | | | | | | | | | | Plati | | | | | | | | | | | | | | | | | | * Additional details, specifications required from the customer. | | | | | | | | | | | | | | | | | | * Additional details, specifications required from the customer. ### Order example: P 1K0. 520. 4 W. B. 010. M 1: Material identification 1 2 3 4 5 6 7 8 2: Resistance value in ohm Chip dimension 4: Temperature range 5: Extension 6: Tolerance class 7: Connection length 8: Special = Platinum Temperature Sensor = $1'000 \Omega / 0^{\circ}C$ = 5 mm x 2 mm = + 400°C = Wire connections (Ag, Ø 0.25 mm) = DIN EN 60751 class B = 10 mm = metallised backside Specifications are subject to change without notice